関数解析と量子力学の胡乱な話
"Physics Lab. Advent Calendar 2023" 14日目の記事です.本来は2023年12月14日の担当です.遅れて申し訳ありません.
はじめに
量子力学の話をします.簡単に言えば物理学科の学生向けです.最低限度の量子力学の知識は必要ですが,数学的な予備知識はあまり仮定しません[1].
筆者は物理学の歴史や物理学的な感覚に疎いため,物理学に関する記述をあまり鵜呑みにしないことを勧めます.数学的な記述は,説明の直感性を優先するためにある程度曖昧さを持たせているのと,命題の証明は書きませんが,致命的な誤謬は無いよう努めました.
筆者はもともとの文章の構成力の低さに加えて個人の好みもあって注釈を多用し,さらに注釈内に平気で重要な情報を入れるので,お手を煩わせてしまいますが,出てきた注釈はなるべくその場で読んでいただけると幸いです.というわけで上の[1]を未読の方は今ここでお読みください.
ことばの問題
- 数学での一般的な記号(
は実数全体の集合である,など)はとくに断らずに用います. - ここでの「線形空間」は量子力学の慣習に合わせて複素とします.
- 複素内積空間の内積は量子力学の慣習に合わせて左側が複素共役とします,
- ディラック定数
は とします.必要なら適宜物理量の次元から逆算して補ってください. - 「線形空間から線形空間への写像で,(複素)線形性を保つもの」という同じ概念を指す言葉として,「線形写像」,「(線形)作用素」:関数解析での慣習的呼称,「演算子」:量子力学での慣習的呼称,が混在しています(詰めの甘い文章ですね).
本編:量子力学における関数解析的諸注意
イントロダクション
量子力学の計算においては,ディラックが導入したブラケット記法が一般に用いられています.しかし,ブラケットによって表される状態が数学的に正しく"存在"するとは限りません.量子系が属する線形空間が有限次元であれば,ケットが表す状態に対応するベクトルは(固有値問題の解たちでもって空間の基底を確実に張れることで)疑いなく存在しますが,無限次元の空間である場合は固有値問題の解が存在するとは限りません.
このような例を筆頭に,「無限次元の線型代数」には,これはできない,という結果が多く存在します,これらは物理学においては「面倒な些細なこと」と一蹴され,有限次元の結果を勝手に引用し,できることにされてしまうものとして捉えられていますが,数学としては,関数解析の理論をおもしろくする豊かさでしょう.当記事では,量子力学に利用されている関数解析の理論(すなわち,主としてヒルベルト空間論)を舞台に,数学の深淵さを垣間見ていきます.
空間の導入,自由粒子とディラックデルタ
量子力学は,理論的には抽象的なヒルベルト空間上で形式的に定式化されますが,ここでは簡単に,
を用いるのが有効であるとされています[2].この空間の元(すなわち関数)のうち粒子の運動を表すにふさわしいといえる一部のものが波動関数です.
ここで上の定義に「同値関係で割る」という操作があることが,実は数学上本質的です.これは,「関数
多くの関数空間に共通する性質をこの空間も備えています,すなわち,線形空間として無限次元である,ということです.無限次元線形空間の例に漏れず,
また,この空間は内積を備えます(さらにこの内積から誘導されるノルムから誘導される距離は完備であり,ゆえにこの空間はヒルベルト空間です):
ノルムは
さて,
となるため,解は
です.ここで
を要請します.すると,
この処方は形式的なもので,数学的には(やはり)欠陥があります.デルタ"関数"は,実数から複素数(または無限遠点)への通常の関数としては実現されません.(ゆえに,関数,という部分にダブルクォーテーションを付けました.以下では省略します.)実際,通常の関数であったとすると,デルタ関数はa.e.で,すなわち
となり,
有限自由度の通常の量子力学では,正準交換関係などの要請にデルタ関数が出てこないため,超関数を回避した定式化があってもおかしくありません.それについて以下見てみます.
内積,作用素の有界性と定義域
関数解析の理論は,位相線形空間の幾何学的性質を調べる分野と,線形空間における線形写像の各種性質を調べる分野に大きく分かれる,と思います.
前者的な性質のひとつに,量子力学的に言えば「ヒルベルト空間において,ブラとケットは
量子力学で使う数学のもっとも大切な道具は内積,双対空間と演算子です.内積,双対空間については上の通りすべてわかっている[5]ので,演算子について,すなわち関数解析のもうひとつのテーマに踏み込みましょう.まずは作用素の一般論を考えます.
ノルムを備えた線形空間
によって定義されます(
(有限次元)線形代数の重要な定理として,有限次元空間の間の作用素は全て有界つまり連続である,というものがあります.これは各空間の基底を取ることで線形写像が有限サイズの行列で書けるようになることからわかります.行列を成分で書きおろして計算する,というのは,実行するのはめんどうですが,理論的には強力な道具です(たとえば逆行列のクラメルの公式のように!) .
しかし無限次元では破れます.例えば,
線形ですが,この作用素は上の意味の有界性を満たしません:「区間
代表的な(関数解析学はおもに関数のなす線形空間の研究で発展してきました)非有界作用素に,微分するという作用素があります.微分は線形演算なのでこれも線形作用素です.
しかし,それでも全ての
ということで,位置演算子(位置座標表示において,
なお,位置や運動量やエネルギー(ハミルトニアン)や角運動量など古典論に対応物がある物理量はたいてい非有界作用素なのですが,量子論に特有な量であるスピンは有界作用素で描かれます.実際にスピン演算子は行列で表現することができて,行列は有界作用素なのです.行列ではこれから導入するエルミート性と自己共役性が同じなので,スピンだけを考える限りここでの記述は全て自明なものになります.
自己共役性
全域で作用できるかどうかはともかく,位置と運動量演算子を数学的に定義できました.まずはこれらの定義域が「ある程度広い」ことを確認して安心しておきましょう.
この段落では古典的微分(素朴な微分)を考えるのでa.e.一致の同値関係は取りません.ここで急減少関数の空間
を満たすもの,たちによって構成される関数ベクトル空間として定義されます.ここで
命題1 急減少関数の
関数空間
となるような関数列が存在する.実際は,滑らかかつ遠方では厳密に
すなわち急減少関数は「十分たくさん」存在します.これをもって,かけ算や微分作用素は「ある程度広い」定義域を持つことが保証されます[10].
命題の標準的なステートメント(
さて本格的に演算子の性質を見てみましょう.以下ではヒルベルト空間
作用素
となるような
となるような作用素
量子力学の理論は,ヒルベルト空間とその上の自己共役作用素によって定式化されます:要請の一部「量子状態はヒルベルト空間のある単位ベクトルによって表される.定数倍で結ばれる状態は同一視する.物理量はある自己共役作用素によって表される」.
物理学の文脈では,自己共役性の理由を(しばしば自己共役性をエルミート/対称性と同一扱いして)「物理量の観測値が実数であるから」として説明します.エルミートな作用素の固有値は全て実数なので,これはもちろん理由の一つとしては真っ当です.実際,有限次元ではエルミート性は自己共役性と同値です(作用素が有界なために,定義域が有限次元ベクトル空間全域にわたるため).さらにエルミート行列は固有値を持ち,独立な固有ベクトルが空間次元の数だけあるので何をするにも困りません.離散な観測値の全てにその状態の空間への射影演算子が付随し,射影演算子に固有値をかけたものたちの和でもってもとの行列を再現できます(エルミート行列のスペクトル分解).
それでは,固有値が存在しなかったらどうなるでしょうか?
固有値問題とスペクトル
最初のほうに扱った自由粒子の問題は,自由ハミルトニアンの固有値問題としてシュレディンガー方程式を解こうとしたものでした.ここで,ハミルトニアンはエネルギーに相当する物理量なので,ハミルトン演算子
さらに,位置演算子と運動量演算子も,それぞれ解析することで自己共役であることはわかるのですが,固有値を持ちません.それぞれ確かめてみると,まず位置については,
を
「物理量の観測値は演算子の固有値である」という説明がしばしばなされます.しかしここで見たように,位置と運動量,または自由粒子のエネルギーという基本的な物理量は固有値を持ちません.この無限次元での問題を克服するため,関数解析ではスペクトルという概念がさだめられています.詳説は省きますが,この文脈では固有値はスペクトルのうち特別な「点スペクトル」と呼ばれるものになります.そして,固有値を持たない演算子は,代わりに「連続スペクトル」を持つことになります(ただしこの2つは二律背反というわけではありません.ここでは直感的な表現を優先しています:のちの注釈[12]も参照).逆に,
連続スペクトルの概念は無限次元でのみ意味を持ち,量子力学的には連続スペクトルは系の自由状態,固有値は束縛状態に対応します[12].自己共役作用素のスペクトルは次のような性質を持ち,それが固有値の一般化であり,物理量の観測値としてみなせる,というにふさわしいことがわかります.
定理2 自己共役作用素のスペクトル
であり,スペクトルは閉集合である. が存在し, ,すなわち であるとき, である. であるとき,またそのときに限り,ベクトル列 で, であり,かつ となるもの,が存在する.
さらに,
ここまでに出てきた
を満たすことが計算できます.よって,位置と運動量の観測値は任意の実数値を取り,自由粒子のエネルギーつまり運動エネルギーは非負の実数値を取ります.なお,作用素のスペクトルはユニタリ変換によって不変なので,
スペクトル定理と観測の公理
さて,長い準備でしたが,ようやく各所に散らばった伏線達の回収が見えてきました(実際の筆者はこの節で書く予定の内容の多さにいま絶望しています).
ここでもう一度有限次元の復習をしましょう.
という関係を満たします(
によって線形作用素
さらに,射影行列
とはいえ,これまで再三注意したように,無限次元の量子系では固有値が存在しないことが多く,上のような方法が使えるかどうかは非自明です.そこで,作用素関数
が成り立つことを期待してみましょう.ここで
定理3 自己共役作用素のスペクトル分解定理 (von Neumann)
を満たす.さらに,この
が定義でき,とくに,
ただし,上の枠内は,「妥当な」という言葉で説明を省略した部分以外にも,非正式な内容を含みます.まずは射影作用素というのは全域的な有界作用素
以下の引用枠の内容はスペクトル定理に関する本質的な注意で,残念ながら,定理の証明を追わず量子力学への応用だけを意識する場合でも理解しなければならないことです.しかし当記事の想定としては難しすぎると判断したため,スペクトル測度の引数としてボレル集合を取ること,さえ了承すれば,下記のその他の内容を前提にせずとも問題なく記事を最後まで読めるように調整しました.
もっとも記号的(非正式)なのは積分の定義です.定理3の積分は,とりあえずは
という内積の形で意味を持ちます(一応,
が有界であるとか, が連続関数であるとかのような条件下では, は有界作用素値リーマン=ステイルチェス積分として直接意味を持ちえます).この等式は,スペクトル測度 が添字集合を からボレル集合族 ("まともな" の部分集合たちの寄せ集めのことです)に変更してできる写像 :ここで は 上の正射影作用素全体からなる集合,によって複素測度 を誘導し,この測度によるルベーグ積分の結果が複素数 と一致する,と解釈する必要があります. ベクトル値のルベーグ=ステイルチェス積分によって
をベクトルとして得ることもできますが,量子力学の演算子は作用した後最終的に内積を取ることを前提としているので内積ありきの定義のみでもここでは問題ないはずです.
スペクトル測度は実際に
が成立します.さらに,1点スペクトル測度
観測と波束の収縮を定式化するために「固有値」「固有空間への射影」の概念を一般化するのがともかく必要でした.今となってはスペクトル定理のおかげで観測を数学的に定式化でき,そして,単位の分解やスペクトル分解ができる保証こそが,物理量に自己共役性(エルミート性や対称性にとどまらず!)を要請する本当の理由であることがわかります:要請の一部「物理量
すなわち,観測値が
ストーンの定理と時間発展
いよいよ答え合わせの時間です.まずは時間依存シュレディンガー方程式を定式化するために,自己共役なハミルトニアン
ベクトルの微分と演算子の定義域の問題がありますがとりあえず無視して,シュレディンガー方程式は
と書け,これは
と初期値があれば解けるはずです.これは
冒頭に述べた自由粒子の問題は,固有値問題としては解けませんが,時間依存を考慮した問題としては解決できるのです.これは物理的には自由粒子は束縛状態を持たないということで,連続スペクトルや固有値の物理的意味とも整合しています.ところで
となります(フーリエ変換で微分をかけ算にして計算することになります.初期値
しかし自由粒子の答えを急ぎすぎました.ユニタリ作用素の集合
定理4 ユニタリ群と自己共役作用素の対応 (Stone)
(1) 各
(2) 各
(3)
一般にユニタリ作用素の族
- ユニタリ群
が与えられたとき,その生成子 が一意に存在し,それは上の(3)と同様の性質で特徴付けられる.
この定理によって微分や定義域の問題は完全に解決され,時間依存シュレディンガー方程式が解けました.本来はユニタリ群の定義とこの定理を先に導入し,それから要請を「時間発展はハミルトニアン(の
ストーンの定理は「ある対称作用素が適切な拡張のもとユニタリ群を生成するならば,その拡張は自己共役である」のような使い方ができます.例えば,
ハミルトニアンによる時間発展は時間後退も許されます(とにかく,観測さえその間に起こっていなければ).
自己共役性の問題
だらだらと引き伸ばしてしまいましたが,今度こそ役者は揃いました.あとは考察したい量子系の古典ハミルトニアンを求め,正準量子化を(必要ならスペクトル定理による作用素関数の意味で)実行し,それを指数関数の肩に乗せて計算すれば系の初期値問題が解け,物理量の期待値は(弱微分やフーリエ変換の解釈に気を付けて)従来通り
……はて? 位置や運動量や角運動量や自由ハミルトニアン以外の,多くの物理量の自己共役性を我々はまだ知らないのでした.自己共役性が本当に大事だというのは今更言うまでもなく,今すぐ解決せねばなりません.
自己共役性の判定問題は非常に純数学的にも深く広く,その全てはとても,とても私ひとりの手には負えません.が,その端くれ(と呼んでいいのだろうか?)として,調和振動子と3次元クーロンポテンシャルのハミルトニアンの自己共役性,をそれぞれ違うアプローチで見ることができます.
ところで,自己共役性の本質はスペクトル定理にある,と繰り返してきましたが,物理的には境界条件の適切な設定が自己共役性の持つ意味である,と解釈できます.シュレディンガー型方程式の一意解決というのも偏微分方程式の初期値,境界条件が適切に設定されているからなのです.今まではユークリッド空間全体上の関数を扱っていたので境界条件は自明でした.これが半直線上の関数であるとか有限区間である(無限の井戸)とかした途端に困難が生じ,境界条件次第では運動量演算子すら自己共役性を失います.自由ハミルトニアンはある程度耐えてくれるので,エネルギーの計算は幸いなことにたいていの状況で可能です.境界に関する同様の問題は一般の偏微分方程式論でももちろん生じて広く研究されており,ある程度一般的な結果も得られています(Lax-Milgramの結果やLionsによる一般化とBabuškaによる一般化,Sobolevの埋め込み定理の利用など.もちろん当記事では踏み込めません).
調和振動子は比較的簡単です.とりあえず古典的な微分でもって急減少関数空間
この「固有関数展開が可能である」という部分が本質的で,なんとこの事実からハミルトニアン(の
3次元クーロンポテンシャルを考えましょう.
定理5 自己共役性の摂動安定性 (加藤-Rellich)
が成立しているとき,
実際にクーロンポテンシャルは加藤-Rellichを適用できます.定義域の問題は少し厄介ですが下の評価を導く最中で解決できます.定数
となることがわかる(関数空間論の定石通りに
おわりに
お腹が減ったのとMathlogの編集画面が重すぎるのでここで終わりです(と言いつつここでそこそこの文量書きます).アドカレ企画での公開予定日に10日くらい遅れておいてこの体たらくなのは本当に申し訳ない.
筆者の自分語り
「物理学の現場における数学的非厳密な操作を正当化する方法を紹介する」「関数解析のおもしろさを伝える」みたいな気持ちで書いたものですが,前者はともかく後者はどうなのでしょうか.私は「これはできない」という数学的不可能性(本当の数学者から見ればちょっと浅い例示かもしれませんが,ゲーデルの不完全性定理.)が好きなので厳密な論理構成に抵抗が無いのですが,流石に全員がそう,というわけでもなく,ただただ拒絶する方もいらっしゃるだろう……こんな場所までたどり着いているかどうかはさておきね.おもしろさではなくとも,数学の難しさだけでも伝わればある意味成功だと思います.
思うに学部生が感じる解析の苦しさというのはルベーグ積分の修行にあるのではないでしょうか.それから東京大学理学部物理学科のカリキュラムを見てみるとルベーグ積分の講義はありません(工学部には確率論絡みの講義があるらしい).というわけでそういう内容はできるだけ避けました.最近の関数解析やルベーグ積分の教科書も,この類のとっつきやすさを狙っている気がします.ところで修行が苦しいというのは残念ながら幾何も代数も同じで悩んでいます.私は作用素環に興味があるのに,もろもろの代数構造の定義すらわからない.(折りたたみここまで)
さて当記事の内容から極端に離れないレベルでここに書ききれなかった関数解析の道具は(筆者の少ない知見の中で)もう少しあって,例えばRiesz-Thorin補間定理やHardy-Littlewood-Sobolev不等式といった関数のノルム評価に使える結果があり,これをうまく適用すると自由粒子のある種の「消散」のしかたを理解することができます(Stricharz評価).あくまで自由粒子の例であり,実際の量子力学をする上で偏微分方程式論などへの寄り道は(ほとんど)いたるところにあります.
また当記事は抽象バナッハ空間論の基本原理たち:一様有界性原理 (Banach–Steinhaus),閉グラフ定理,Hahn-Banachの定理,をとりたてていません.閉グラフからは「全域的な自己共役作用素は有界である,あるいは,非有界な自己共役作用素は作用できない元を持つ」(Hellinger–Toeplitz)という量子力学の困難のひとつを取り出せる,などこれらは当記事の範囲でも応用のある重要定理であり,関数解析のおもしろさを担っています.抽象論であって関数空間(ルベーグ積分)を使わずとも触れられるので,この部分だけでも勉強してみてはいかがでしょうか.たいていの関数解析の教科書は前から順番に読むとまず基本原理たちにたどり着くと思います.
来年は場の量子論と作用素環で同じような記事を書きたいです.
率直に言うと,私の準備と知見の不足で詳しい話ができそうにないので,「数学のカンタンな話の説明で文の分量を稼ごう」という目論見であり,当記事の狙いは,教養の後の解析学(ここではルベーグ積分やヒルベルト空間論のこと)をしっかり勉強していない人に関数解析のおもしろさを伝えよう,ということになります.ということで,関数解析を勉強したことがある方は,このページを閉じてアドベントカレンダーの記事一覧に戻っていただいて構いません. ↩︎
ここで全ての関数はルベーグ積分を考えることができる(可測関数であるもののみ考える)とします.これはあなたが選択公理のオタクでなければあまり気にしなくてよい条件です.今後関数の定義域を
次元空間に広げて話をすることが一部ありますが,特に気にせず と思ってもらっても構いません. また,完備性とよばれる性質を満たし,(可算)無限次元である内積空間,すなわち(可分)無限次元ヒルベルト空間であれば,他の線形空間であっても量子論は問題なく進みます(例えば,ハイゼンベルグの行列力学において使われた, 乗級数が収束する無限数列のなすヒルベルト空間).しかし一般に計算は複雑で非直感的となるため,無限次元空間の量子力学は 乗可積分空間で考えることが一般的です(シュレディンガーによる波動力学).量子力学の定式化の一意性,例として行列力学と波動力学の等価性の問題は,「ストーン=フォン・ノイマンの定理」という部分的肯定の結果がありますが,ある意味では一意ではないこともわかっています(新井本,近藤本などを参照). ↩︎ ルベーグ積分をするからa.e.一致の同値関係が必要なのであって,リーマン積分をすればよいのだと思うかもしれませんが,ルベーグ積分でできないことはたいていリーマン積分でもできません.広義積分しようとすると,結局
です. また,デルタ関数には通常の関数の極限としての"表示"がありますが,(どちらの意味でもよい)積分をした後に極限を取ると が落ちてくるのであって,極限を取った後に積分をする,すなわちデルタ関数を積分せず裸の状態で取り出そうとすると,上で述べたようなおかしさに直面するのです.極限の交換に潜む罠です(ところで,もちろんデルタ関数は無理ですが,ルベーグ積分においてはその他のシチュエーションでの交換はわりと簡単に許されて楽しいですよ). ↩︎ 私は全く読んでいませんが,Schrader, R. (1974), Local Operator Products and Field Equations in P(φ)2 Theories. Fortschr. Phys., 22: 611-631. https://doi.org/10.1002/prop.19740221102 に「場の量子論におけるくりこみの部分的な必須性」の証明があるらしいです.新井朝雄「フォック空間と量子場(上)」(日本評論社)からの受け売り. ↩︎
厳密には内積と双対空間は別のものですが,それはほとんど同じものである,すなわち連続線形汎関数は全て内積の形(内積の片方が既に埋まっていて,空いているほうにベクトルを入れて複素数が出てくるという汎関数)で書ける,というのがリースの表現定理です.同型なのでヒルベルト空間ではこのふたつは特に区別なしに扱われます. ↩︎
記号の乱用をしています.本来
は変数であって関数ではありませんが,この文字を使って関数をも表すことにしています.かけ算作用素の作用結果である「実数 に対し複素数 を返す関数」を正確に記述するなら,ドットを使って" "あるいは" "とでも書くべきでしょうが,これではかえってわかりにくくなっている気がします. ↩︎ </a>作用素の定義域はかなり微妙な問題で,ここで完全に同じであるとはとても言えません.有界作用素であっても定義域を恣意的に小さくすれば当然全域的ではなくなります. 逆の,全域で作用できる非有界作用素,は実用の範囲では存在しないように思います.実用的な作用素は定義域を自然に広げればほとんどが閉性という性質を持ち,閉作用素については全域で定義されていれば有界であることがわかっています(閉グラフ定理).また,作用素の意味の有界性よりやや緩いある種の有界性を持つ作用素が,その種の有界性を保ったまま全空間に拡張できることもわかっています(ハーン・バナッハの拡張定理)が,無限次元空間ではツォルンの補題に頼っていて,明示的に拡張の方法を与えてはくれないので計算には使えず,ここでは出てきません. ↩︎
ヒルベルト空間の一般化.内積が無いことも許した完備ノルム空間のこと.もちろんヒルベルト空間はその内積から得られるノルムが完備なのでバナッハ空間の一種です.また
空間はルベーグ空間と呼ばれることがあります. ↩︎ 階までの弱微分が存在し,その全て(微分されない,もとの関数を含む)が であるような関数全体がなす線形関数空間はソボレフ空間と呼ばれ, などと書かれます. は各導関数の ノルム(絶対値の 乗の積分の 乗)の和をノルムとして完備なバナッハ空間となります( なら自然に内積が入りヒルベルト空間).たとえば 次元空間上の関数の場合, に属する関数(のa.e.一致の同値類に属する特定の関数)は連続であることがわかっています(ソボレフの埋め込み定理の適用例).弱微分は極端に不連続な関数には正常に適用できない,という教訓を得られますね. ↩︎ 急減少関数は言うまでもない性質の良さと空間の
での稠密性から多くの応用を持ち,例えばフーリエ解析や超関数論での主な道具となります. 一般に,線形空間が狭いほどその双対空間は広がります(連続作用しなければならないベクトルが減るため連続性の条件が緩くなる).すなわち の双対空間 は の双対空間(リースの表現定理により それ自身)より広く,大まかには超関数の空間となります.このようにしてデルタ関数などを枠組みに入れてケットベクトルを正当化しようとする方法はrigged Hilbert spaceあるいはGelfandの3つ組と呼ばれます. という構図です. ↩︎ エルミート性は共役作用素の存在に頼らずに定義されているため,エルミート性と対称性は厳密に区別することができますが,稠密ではない作用素はここではあまり使わないので気にしなくても構いません.重要なのは対称性と自己共役性の区別で,たかが定義域の違いと侮ってはいけない本質的な違いを持ちます(後述参照). ↩︎
数学的には「剰余スペクトル」という概念もあり,作用素が一個与えられると全ての複素数はその作用素のレゾルベント,固有値,連続スペクトル,剰余スペクトルのどれか一つのみに属する(ようにこれらは定義されている)のですが,自己共役作用素は剰余スペクトルを持たないことが証明できるので当記事では扱いません.また,連続スペクトルはさらに「絶対連続スペクトル」と「特異連続スペクトル」に分類されますが,これは筆者の知見の範囲外なので放置します.Wikipediaの情報(2023年12月21日)によれば,"ふつうの"物理量の観測値は固有値か絶対連続スペクトルに属するようです.実際位置と運動量と当記事でのハミルトニアンは特異スペクトルを持ちません. ↩︎
ユニタリ変換とは
全域で定義された作用素 であって,全射であり,内積保存性 を満たすもの,として定義されます.内積は偏極恒等式 によって書けるので,内積保存はノルム保存と同じことです.また,ノルム保存性から連続性と単射性が直ちに従います. フーリエ変換がユニタリであるためには,ノルム保存のために,係数は と で対称的である必要があります.そうすると広義積分で定義されたフーリエ変換は急減小関数空間からそれ自身への内積保存連続全単射になり,これを連続に拡張することで からそれ自身へのユニタリ変換が得られます. なお積分 は だが ではない関数 には定義できず,したがってこの種の関数へのフーリエ変換は連続拡張によって一意に定義されているにもかかわらず,さしあたり簡単な積分の形では与えられません.ただし: とフーリエ変換の差を 乗して で積分したものの の極限は です(平均 乗収束). ↩︎ 省略されていますが
です.スペクトル測度は単調弱増加であることが要請されているため極限は存在します.上の引用枠で導入されたボレル集合を引数に取るスペクトル測度で解釈すれば,1点集合 は閉集合でしたがってボレル集合なので安直に代入できます. ↩︎ 波束の収縮についてはさまざまな議論があります.「測定直後の状態は射影されたベクトル
の規格化である」という形の要請も(他のことばの定義の差異のもと)存在しますが,本文のものであれこれであれ,観測直後に同じ物理量を測定すると観測値は再び に入っています. 交換する物理量の同時測定については注意が必要で,単に自己共役作用素たちが交換するだけではなく,より強く,それらに付随するスペクトル測度たちが常に交換する強可換性を満たす必要があります.違う座標成分に対する位置演算子や運動量演算子の のような組は強可換で,したがって同時測定が定式化できます. 要請の取り方によって期待値の表式は他の要請から導けたり導けなかったりすると思います.参考文献では,新井本と清水本では定理であり,近藤本では要請でした.個人的には期待値は他の要請から導けたほうが物理理論として美しい気がします. ↩︎ は実数値パラメータを持つベクトルのノルムでの収束です.他として,任意に固定したベクトルとの内積 が収束する弱収束の概念があります. また,パラメータを持つ有界作用素については,作用素ノルムでの収束を一様収束,任意に固定したベクトルへの作用後のノルムでの収束(ベクトルとしての強収束)を強収束,作用後のベクトルの弱収束を弱収束といいます. ↩︎ 実は,稠密閉な
に対しては が既に(非負な)自己共役作用素となっていて,ゆえにそれと実定数倍作用素の和であるハミルトニアンが自己共役であるとわかります.非有界な に対して明らかではないこの定理はフォン・ノイマンの名を冠しています. ↩︎